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For any analysis of variance model it is well 
known that the sums of squares of the main effects 
and the interactions are independent if the design 
is balanced. However, this independence does not 
necessarily follow for all pairs of sums of 
squares when the design is unbalanced, i.e., 

unequal cell frequencies. Since the latter is 

more likely to occur in practice, it would be 
useful to know the consequences of various degrees 
of imbalance on correlations between the sums of 
squares. 

In the fixed model all the F ratios are cor- 
related to some degree by virtue of a common 
denominator, the mean square for error. If the 
design is unbalanced and the sums of squares are 
fully adjusted, i.e., each sum of squares is 

obtained when its term is ordered last in the 
model, then the F ratios are also correlated 
through their numerators. As a result the tests 
are not independent and the joint probability 
of one or more Type I errors is a function of the 
strength of this correlation. 

The Theory 

This study depends on the representation of 
the analysis of variance model as a linear re- 
gression model by the use of the dummy variable 
technique within the cell means format. Define 
the cell means model in matrix format as = + e 

where is an n x 1 vector of responses, X is 

an n x p matrix of ones and zeroes indicating 
the location of the responses by cell, p is a 

p x 1 vector of cell means and e is the n x 1 

vector of residuals. 
We reparameterize this cell means model by 

the introduction of a full rank p x p matrix of 
contrasts, C , chosen to be of interest to the 

researcher. Write this new model as 

y_= XC- +e =Z6 +e 
so that a = Cu is the set of coefficients dic- 
tated by the analyst's chosen set of linear com- 
binations of the cell means and Z = XC- is a 

"stretched" version of the inverse of the matrix 
of contrasts. We will assume throughout this 
study that all elements of are known or 

specified as measures of the strength of particu- 
lar contrasts defined on the terms in the model. 
For a 2 x 2 model in the usual ordering 

= BAB] 

The purpose of this move from one full rank 

formulation to another should be clear. The 

parameters in both models are uniquely estimable; 
however, the original cell means model just esti- 

mates the cell means whereas the reparameterized 
model provides information which allows the kind 
of comparison of treatment effects needed by the 

researcher. 

Now, if we were interested in estimating , 

we could obtain a vector of solutions to this 
system as 
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0= (Z'Z) -1Z'y 
in the usual manner of multiple linear regression. 

However, for this study we are interested instead 
in a factored version of the Z'Z matrix aug- 
mented by as a means of obtaining expres- 
sions for the sums of squares of the terms in the 
analysis of variance model. A Cholesky factori- 
zation of this augmented matrix can be obtained 
by premultiplication by a Cholesky operator in 

the form 

R [Z'Z = R [Z'Z I z] = [T t] 

and it will be useful to us to partition these 
matrices in order to write exact expressions for 
the sums of squares. If, for example, the inter- 
action is ordered last in a model with two main 
effects, then the last partition in the t 

vector, tAB will be the product of the elements 

in the partitioned last row of the R operator 
matrix with the elements of the z vector. The 
number of rows in tAB will depend on the number 

of degrees of freedom associated with the inter- 
action term. 

If we symbolize this partitioned last row of 
R as R'AB in this ordering and the matrix Z 

in the same ordering as then we have 

RABZ 
therefore 

tABItAB = y:ZABRABR'ABZ'AB,y . 

This last formula is a quadratic form for the 
fully adjusted sum of squares for this inter- 
action (SSAB) for any design, whether balanced 
or not. The same procedure could be used to find 
a general expression for the fully adjusted sum 
of squares for any term in the model by a simple 
reordering of the matrices. Having these, we can 
use well known theorems on the variance and co- 
variance of quadratic forms, as in Searle (1971), 
to obtain the correlation between sums of squares 
for any design. 

If we have x N(n,V), then 

Cov(x'Px,x'Qx) = 2tr(PVQV) + . 

Since our response vector is normally and indepen- 
dently distributed with n = and V a2I , 

we can use matrix P as defined in the quadratic 

expression for SSAB and a corresponding Q 

defined for main effect B ordered last to write 

Cov(SSB,SSAB) = 2a 4tr(ZABRABR'ABZ'ABZBRBR'BZ'B) 

'ABZABRABR'ABZ'ABZBRBR'BZ'BZBßB 

where the superscripts on , as usual, refer to 

a particular ordering of the elements in this 

vector. Observe that the second term in the 

covariance is the non -centrality portion of the 

expression since the whole term becomes zero if 



Recall that the trace is invariant when 
cyclic operations are performed on its argument. 
With this in mind, we have found it convenient 
to rewrite this portion of the first term in the 
covariance as 

for which the dimensions are p x p rather than 
n x n , where p is the number of cells in the 
design and n is the number of data points in 

the sample. 
Before we can compute the correlation between 

SSAB and SSB, we need expressions in a similar 
form for the variance of each sum of squares. 
Searle (1971, p. 57) shows the general form for 
the variance of a quadratic form as 

Var(x'Px) = 2tr(PV)2+ 

where, once again, x N(n,V) . Proceed as 
before to write the variance of (say) the inter- 
action sum of squares as 

Var(SSAB) = 2o4tr(ZABRABR'ABZ'AB)2 

Z,AB)2ZABßAB 
AB AB 

Again, the argument of the trace can be cycled 
for a more manageable matrix product. 

The Application to 2 x 2 ECART Designs 

Interested readers can verify, using a simple 
balanced design, that the formulas described 
above give a well defined zero correlation be- 
tween any pair of sums of squares, i.e., zero 
covariance and non -zero variance. 

However, our main interest is in unbalanced 
designs. In order to systematically study the 
effect of imbalance on correlation between sums 
of squares, we chose the ECART pattern (equal 

column and row totals) as a point of departure. 
This design is attributed to Powers and Herr 
(1975), who used it to study the partial con- 
founding of row and column effects which occurs 
in unbalanced designs because of a lack of 
orthogonality in the design. Using this pattern 
we describe the cell frequencies in a 2 x 2 

model as 
B1 

Al 

A2 

B2 

n - k n+k 

n+k n - k 

Then we can obtain the matrix product Z = X C 

for our reparameterized model, with X a 

4n x 4 array of ones and zeroes corresponding 
to data location and C identified by the term 
ordered last in this matrix of contrasts. 

For example, when interaction is ordered 
last, we obtain 

ZAB X(CAB)-1 
= X 

1 1 1 1 

1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 
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from which R'AB = [a 0 b] 

where a - 2n(n2 -k2) 
and b = 2n(n2 -k2) 

The Z matrix for main effect B ordered last 
is obtained by a reordering of the columns of the 

ZAB matrix. If this is done, then the inverse of 
the transpose of the factored matrix yields a 
last row 

= [0 a 0 b] . 

When these results are used to assemble the 
matrix product needed in the expression for the 
covariance between SSAB and SSB, the value of 
this product is zero. Since Var(SSAB) and 
Var(SSB) can be shown to be non -zero, we conclude 
that the correlation between SSAB and SSB is zero 
in the ECART design. The same result is obtained 
for the correlation between SSAB and SSA for this 
design. 

However, the correlation between the sums of 
squares for the main effects in the ECART pattern 
is non -zero. We proceed directly to write the 
trace in the first term of the covariance between 
SSA and SSB as 

2o4k /n . 

For the second covariance term, the non - 

centrality portion, we can reduce the matrix 
product to 

16ko28A8B(1- k2 /n2) 

so, as expected, the non -centrality term in the 
covariance between SSA and SSB is a function, in 

part, of the contrasts written on these terms. 
It also depends, as does the first term in the 
covariance, on the amount of imbalance and on a2. 

Before correlation can be computed the var- 
iances of the sums of squares must be obtained. 
The matrix products needed here are easily 
deduced from our earlier work on the covariance 
terms. Since the algebra is very much the same 
as it was in finding the covariance, we will 
just assert that 

Var(SSA) = + 16na2ß2A(1- k2 /n2) 

and the parallel expression can be obtained for 
Var(SSB). 

We now have all the ingredients needed to 
write a general expression for the correlation 
between SSA and SSB for the ECART design. Before 
doing so, we will simplify the terms by defining 
w = k/n as a measure of imbalance in the design. 
Also, for later ease in handling the contrasts 
on the main effects, convert them to standardized 
form as *A and *B Then the 

correlation becomes 
w2 + 8k8*A8*B(1 -w2) 

Corr(SSA,SSB)- 

[1 +8nß -w2) ] [ 1 +8nß *B(1 -w2)] 

Under the null hypothesis, = = 0, the 

correlation between the main effects is equal to 

w2 and so depends just on the measure of im- 
balance. Remember that n here is the average 
number of observations per cell; the total sample 



size is 4n . We conclude that, under this 
assumption, a small amount of imbalance in the 
ECART pattern, perhaps occurring fortuitously in 
a large sample, causes little correlation between 
SSA and SSB, whereas any amount of imbalance in a 

smaller sample will result in enough correlation 
that we would conclude important dependence 
exists between the main effects sums of squares 
and, therefore, between the F ratios used to 

test the main effects. 
When one contrast, say , is zero and the 

other is positive, the correlation between SSA 
and SSB decreases for increased sample size and 
for increased strength of the non -zero contrast, 
given a certain level of imbalance in the design. 
The values of this correlation are shown for 
selected cases in the figure below, when w = .5. 

Corr(SSA,SSB) 
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.12 
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. 06 

. 03 
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n= 2 

n=10 
n=40 

4 

For both main effects non -zero, inspection 

of the general form for correlation between SSA 
and SSB in the ECART design will confirm that the 
second terms in the covariance and each of the 
variances will dominate the expression for most 

values of the parameters. Written with just 
these second terms, Corr(SSA,SSB) simplifies to 
approximately w = k/n , the measure of imbalance 
for a wide range of values of the parameters. 
The figure below shows this behavior for 

= .25 over various levels of for several 

sample sizes given w = .5 . The correlation 
begins to drop away from w as increases 
but this decrease is small. We note in passing 
that the correlations are not affected if the 
interaction is ignored in obtaining main effects 
sums of squares rather than our fully adjusted 
approach. 
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Corr(SSA,SSB) 

.5 
n=40 
n-10 

n= 4 

.5 1 1.5 2 

B 

The Application to Other 2 x 2 Designs 

If the cell frequencies are identified only 
by location, i.e., 

B1 

A1 

A2 

B2 

n11 n12 

n21 n22 

Then the Z'Z matrix can still be written in a 

simple form but the factored matrix is unworkable 
so it is not possible to write an expression for 
the correlation between sums of squares as a 

function of the useful parameters. Instead we 

must work directly with the matrix products which 
define covariances and variances for quadratic 
forms. 

To preserve order in our consideration of the 

generalized 2 x 2 design, we will view new 

patterns as departures from the ECART design, 

whose characteristics are known to us. For an 

example, we will explain the case where 

n.. = n11 + n12 + n21 + n22 = 12 . We will not 

consider patterns in which missing cells occur so 

the only two ECART designs are 2,4,4,2 and 

1,5,5,1. 
We know that the 2,4,4,2 ECART has n = 3 

and k = 1 , therefore Corr(SSA,SSB) is .1111 

when we assume the null hypotheses are true. 

Under the same null assumption, Corr(SSA,SSB) is 

.4444 for the 1,5,5,1 ECART. 
Now, view departures from these patterns as 

functions of a new parameter q where, in the 

ECART design, q is used to modify the frequencies 
in the "n + k" cells: 



n-k n+k-q 

n+k+q n-k 

Observe that q 1 changes a 2,4,4,2 ECART 
to a 2,3,5,2 pattern but it changes a 1,5,5,1 
ECART to a 1,4,6,1 pattern. 

We will consider only the case in which the 
null hypotheses are true. Under this assumption, 

i.e., *A= [0000] and *B= [0000], 
Corr(SSA,SSB) decreases for departures from the 
ECART design and increases for departures from 
our proportional designs, as seen in the figure 
below. This agrees with the Powers and Herr 
(1975) conclusion that the ECART design is the 
most non -orthogonal design. From these starting 
points, the correlations for the departures from 
this design move in predictable directions for 
increasing values of q . 

Corr(SSA,SSB) 

.44 

.33 

.22 

.11 

1 2 3 4 

Finally, for the 2 x 2 design, we will 
briefly consider the change in Corr(SSA,SSB) 
which occurs as total sample size increases from 
n.. = 12 to n.. = 24 and n.. = 36 . The 
number of possible patterns increases greatly 
with larger sample sizes; we will study only the 
effect of the larger sample by discussing those 
patterns in which the ratios of k to n and 
q to k are the same as they were for the 
n.. = 12 cases where n = 3 and k = 2 . 

Given these conditions on the larger sample 
sizes, Corr(SSA,SSB) remains the same when the 
null hypotheses are assumed true. This is the 
case where the contrasts are all zero so the 
second terms in the covariance and the variances 
are also zero. The unchanged correlation means 
that the change in the variances of the sums of 
squares as sample size increases is exactly 
offset by the change in covariance between the 
sums of squares. Given the fixed k to n ratio, 
this confirms the result found for the ECART 
design and extends it to departures caused by 
non -zero values of q. 
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However, the behavior of Corr(SSA,SSB) when 
sample size is increased and one or both of the 
standardized contrasts on the main effects is 
non -zero is not as easy to explain, since the 
rise in n.. causes the correlation to drop in 
one case and rise in the other. Refer to the 
figures below to see that the correlation falls 
for increased n.. over the range of q when 
one contvast is zero and the other is positive. 

.33 

.22 

.11 

.5k 

Corr(SSA,SSB) 

.4 

k 1.5k 

.2 - Both non -zero 

t 

5k k 1.5k 

2k 

n..=36 
n..=24 
n..=12 

q 

2k 

When both contrasts are positive the correlation 
rises with increased sample size. It would seem 
that, for both contrasts positive, we are denied 
the reward of lower correlation for a larger 
sample. But this assumes that orthogonality is 

an unmitigated virtue where a little reflection 
will confirm that it is not. If both null hypo- 
theses about the main effects are, in fact, false 

then it is better to have high correlation be- 

tween SSA and SSB so that the chance of rejecting 
both null hypotheses is enhanced and thus there 
is a pay -off from the larger sample,just as there 



is in the other case, where one null is true and 
the other is not, so the payoff from the larger 
sample comes in the form of lower correlation 
between the sums of squares of the main effects. 

Application to Larger Designs 

Since the determination of the number of 
levels for a categorical treatment is sometimes 
arbitrary, e.g., low, medium and high versus 
just low and high, we have studied to what ex- 
tent the choice of number of levels affects the 
correlation between sums of squares. To isolate 
this influence we studied a fixed sample size, 
n.. = 36, for fixed amounts of imbalance in the 
ECART design for three different assumptions 
about the number of levels per treatment: the 
2 x 2, the 2 x 3 and the 3 x 3 designs. 
As is shown in the figure below, the level of 
correlation decreases as the size of design 
increases, other things being equal, given the 
null hypotheses true. 

Corr(SSA,SSB) 

.60 

.45 

.30 

.15 

.25 .50 .75 

This indicates that the larger versions of the 
ECART design are more orthogonal than the smaller 
versions with the same nominal level of im- 

balance. This is probably due to the presence 
in the larger designs of some cells with fre- 

quency of "n" which are unaffected by the 
parameter k . 

Correlation Between F Ratios 

When simultaneous F tests are done on the 

same data set in a fixed analysis of-variance 
model, the F ratios are dependent because they 
have the same denominator, the error mean square. 

For a balanced design, the numerator sums of 
squares are independent, so all the dependence 
in the F ratios is caused by their common 
denominator. Hurlburt and Spiegel (1976) 

evaluated the conditional probability that both 

F ratios are significant given that one F 

ratio is significant under the assumption of 
independent numerator sums of squares. For 

unbalanced designs, the F ratios are also 
correlated through their numerators in many cases 
and our results so far enable us to measure this 
correlation since it depends, in part, on the 

covariance between sums of squares. This was 

done, under the assumption of true null hypo- 

theses, for pairs of F ratios with independent 
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numerators and for pairs with dependent numera- 
tors. These correlations will be used to approxi- 
mate the joint probability that one or other or 
both F ratios are significant, i.e., that at 
least one Type I error is committed in the 

simultaneous tests. 

Since the F statistic is a ratio of 
independent x2 statistics divided by their de- 
grees of freedom, let x be distributed as a x2 

with "a" degrees of freedom, let y be distri- 
buted as a x2 with "b" degrees of freedom and 
let z be distributed as a x2 with "c" de- 
grees of freedom. We will use z as the 
denominator x2 distribution in defining a pair 
of F ratios, so that x and y will both be 

assumed independent of z but not independent of 
each other. Then, by definition, the general 
expression for the covariance between two F 

ratios is 

Cov(Fx,Fy) = Coy 
z' c 

x /ab 
E L(z/c)2 E E 

E(xy)E(z-2) E(x)E(y)E2(z-1) 
] 

but we can obtain 

E(xy) = Cov(x,y) E(x)E(y) 

and we know that the expected values of these 
random variables are just equal to their degrees 
of freedom if their distributions are centrally 
x2 This will always be the case for the 
denominator variable z in our F statistic; 
we will be concerned with the joint probability 
of Type I errors made when the null hypotheses 
are true, so the numerator random variables will 
also have central x2 distributions. 

Expected values of powers of these random 
variables can be obtained using the expectation 
of the gamma distribution. In this way, it can 

be shown that 

2 1 
E(z ) (c -2) (c -4) 

for c > 4 , and also that 

E(z -1) = 

for c > 2 by the same approach. 

Given all of this we have been able to show 
that 

Corr(F ,F ) - (c- 2)Cov(x,y) + 2ab 

x y 2 ab(a +c- 2)(b +c -2) 

for c > 4 and a,b > -4 . The only operable 

restriction on this expression is that the number 

of degrees of freedom for the error sum of 
squares must be greater than 4 . 

In the application to a 2 x 2 design this 

expression becomes, in terms of the covariance 
between main effect sums of squares, for the F 

ratios used to test these main effects: 

Corr(F ,F ) - (4n- 6)Cov(SSA,SSB) + 2a4 

A B 2(4n -5)a4 



for a design with 4(n -1) degrees of freedom for 
error, such as the 2 x 2 ECART. When the 
Cov(SSA,SSB) for this size ECART design is sub- 
stituted into this formula, under the assumption 
that the null hypotheses are true, we obtain 

2 

Corr(FA,FB) 
= w2 + 

which approaches w2 assymptotically as sample 
size becomes large, the same value found earlier 
for Corr(SSA,SSB) for the 2 x 2 ECART design 
under the same assumption. 

For the generalized 2 x 2 design, the w2 

term is replaced by 

tr(ZARAR'AZ'AZBR . 

The argument of the trace is one that we have 
seen before in calculations for the correlation 
between sums of squares. 

Equivalent expressions for larger designs can 
be written as well. For a 2 x 3 size, the 

error sum of squares will have 6(n -1) degrees 
of freedom, again using n in our context as 

an average cell frequency, and the correlation 
becomes 

Corr(FA,FB) - (3n-4)tr(M) + 1 

3(6n-7)(n-1) 

where the argument M of the trace is the same 
as used above. If the same is done for the 
3 x 3 design, the formula is 

Corr(FA'FB) (9n18(nti(M) + 3 

The Overall Alpha Level for a Pair of F Tests 

If the null hypotheses are both true in a 

pair of F tests, then an alpha error is com- 
mitted whenever either one or other or both of 
the null hypotheses are rejected. We are in- 
terested in the joint probability that an alpha 
error will occur in some way, which will be the 

complement of the event that both decisions are 
correct, written for the main effects in a 
2 x 2 model as 

1 - Pr(accept = and accept = 0) . 

This probability is described by a central 
bivariate F distribution for which we have 
been unable. to find á closed form in the liter- 
ature in the general class when the numerator 
mean squares are correlated. Hurlburt and 
Spiegel (1976) evaluated the integral of the 
bivariate F distribution when the mean squares 
are independent but extending their results is 
not straightforward. We have worked with an 
approximation to probabilities from the bivari- 
ate F distribution suggested by Johnson and 
Kotz (1972, p.242). The results of these cal- 
culations, using as input the correlations be- 
tween pairs of F ratios for tests on the main 
effects found earlier in this study, indicate 
that the overall alpha level reacts strongly 
to imbalance in the design on the order of 
w = .5 or higher by our measure of imbalance. 
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We.are now attempting to evaluate the 
bivariate F distribution directly for cases 
of correlated numerator mean squares in order 
to obtain precise measures of the overall alpha 
level. If the series expression for this dis- 
tribution converges rapidly then accurate 
values for this probability should be possible. 

The foregoing is a part of a much more 
detailed study found in Jordan (1976). 
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